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Evidence suggests that the hyperammonemia (HA)-induced neuroinflammation and alterations in the serotonin (5-HT) system 
may contribute to cognitive decline and anxiety disorder during hepatic encephalopathy (HE). Probiotics that maintain immune 
system homeostasis and regulate the 5-HT system may be potential treatment for HA-mediated neurological disorders in HE. 
In this study, we tested the efficacy of probiotic Lactobacillus helveticus strain NS8 in preventing cognitive decline and anxie-
ty-like behavior in HA rats. Chronic HA was induced by intraperitoneal injection of ammonium acetate for four weeks in male 
Sprague-Dawley rats. HA rats were then given Lactobacillus helveticus strain NS8 (109 CFU mL1) in drinking water as a dai-
ly supplementation. The Morris water maze task assessed cognitive function, and the elevated plus maze test evaluated anxie-
ty-like behavior. Neuroinflammation was assessed by measuring the inflammatory markers: inducible nitric oxide synthase, 
prostaglandin E2, and interleukin-1 β in the brain. 5-HT system activity was evaluated by measuring 5-HT and its metabolite, 
5-HIAA, and the 5-HT precursor, tryptophan. Probiotic treatment of HA rats significantly reduced the level of inflammatory 
markers, decreased 5-HT metabolism, restored cognitive function and improved anxiety-like behavior. These results indicate 
that probiotic L. helveticus strain NS8 is beneficial for the treatment of cognitive decline and anxiety-like behavior in HA rats.  
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Patients with liver cirrhosis very frequently develop hepatic 
encephalopathy (HE), a neuropsychiatric syndrome primar-
ily including cognitive impairment and emotional disorder 
[1,2]. Hyperammonemia (HA) is suggested to be a main 
factor responsible for these neurological disorders occurring 
in HE [35], and its mechanisms of action are currently 
under investigation in animal and clinical studies. Data from 
these studies suggest that HA induced cognitive impairment 
may be mediated by neuroinflammation [6, 7]. Furthermore, 
these studies support the idea that anxiety disorder, one of 
the emotional disorders commonly observed in patients with 
HE [8], is associated with alterations in serotonin (5-HT) 

metabolic activity [911] resulting from HA [12]. Moreover, 
the kynurenine pathway (KP), which converts tryptophan 
(TRP) to L-kynurenine (KYN), may also be involved in 
modulating HA-induced anxiety disorder because TRP is 
the precursor for 5-HT synthesis [13–15].  

Animal models of HA are crucial for elucidating poten-
tial pathophysiological mechanisms and thus, developing 
possible therapies for HE. Current animal models of chronic 
HA are generally limited to rats and mice, and have been 
designed to predominantly study the effects of HA per se on 
brain function [16]. The injection of ammonium acetate 
intraperitoneally (i.p.) has been shown to be successful in 
demonstrating HA-induced alterations in the brain [17–19]. 
These experiments are inexpensive and simple to perform. 
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Classic therapeutic approaches for HE involve the reduc-
tion of HA levels via antibiotic treatment and administration 
of nonabsorbable sugars, such as lactulose [20,21]. These 
treatments, however, are not optimal therapies because of 
their side effects, toxicities, and poor compliance from pa-
tients [22]. Probiotics, such as the Lactobacillus species, are 
living microorganisms that contribute to the balance of in-
testinal microbiota, thereby improving the health of the host. 
Probiotics may have the potential to treat the neurological 
disorders associated with HE, because of their ability to 
suppress the pro-inflammatory response [23,24] and regu-
late the activity of the 5-HT system [25]. Indeed, data from 
animal and clinical studies have revealed that probiotics can 
improve cognitive function [26] and decrease anxiety and 
depression symptoms [25,27–29]. However, the mechanism 
by which probiotic bacteria residing in the gut enable their 
protective effects to the central nervous system remains 
unclear.  

Therefore, the overall aim of this study was to assess the 
efficacy of the probiotic Lactobacillus helveticus (L. helvet-
icus) strain NS8 in preventing cognitive impairment and 
anxiety-like behavior in HA rats. L. helveticus has been 
shown to inhibit pro-inflammatory responses and improve 
murine brain function and behavior [30,31].  

1  Materials and methods  

1.1  Animals 

Specific-pathogen-free male Sprague-Dawley rats (180– 
200 g) (Vital River Animal Centre, China) were used in the 
study. Rats were housed individually in wire-mesh cages in 
an animal room at a controlled temperature (20±2°C), with 
a relative humidity of 50%–55%, and exposed to a 12:12 h 
light/dark cycle. Animals had ad libitum access to standard 
laboratory rodent chow and fresh sterile water. Three 
groups of animals (six rats per group) were used in the 
study: (i) sterile saline-injected (i.p.) rats exposed to fresh 
sterile water (control group), (ii) HA rats exposed to fresh 
sterile water (HA group), and (iii) HA rats exposed to fresh 
sterile water containing L. helveticus NS8 (HA+NS8 group). 
The experimental protocol was approved by the Animal 

Experiment Ethics Committee of the Institute of Psychology, 
Chinese Academy of Sciences. 

1.2  HA rat model 

HA was induced by 2.5 mmol kg1 body weight ammonium 
acetate (Sigma-Aldrich, USA) (i.p.) dissolved in the sterile 
saline, once per day, three times per week for four consecu-
tive weeks [19,32].  

1.3  L. helveticus NS8 strain and culture conditions 

The L. helveticus strain NS8 (GenBank accession No. 
JQ013296.1) was isolated by our laboratory from natural 
fermented dairy products collected from grassland in Inner 
Mongolia, China. L. helveticus strain NS8 was stored in 
DeMan-Rogosa-Sharpe (MRS) broth (Biokar Diagnostics, 
France) at –80°C, and subcultured twice in MRS broth for 
18 h at 37°C prior to its use in experiment. Overnight cul-
tures were centrifuged twice at 1500×g for 5 min, cells col-
lected and resuspended in fresh sterile water (109 CFU mL1) 
[33]. NS8-containing drinking water (probiotic treatment) 
was given to HA rats over two weeks. A high bacterial via-
bility was maintained by supplying fresh L. helveticus 
NS8-containing drinking daily. The daily dosages of probi-
otics ingested by the rats were measured by the daily 
amount of water consumed.  

1.4  Experimental design 

Two weeks acclimatization of all rats (week 1–2), ammo-
nium acetate or saline was administered for four weeks 
(week 3–6) to induce chronic HA or serve as control, re-
spectively (Figure 1). HA rats were then given L. helveticus 
NS8-containing drinking water or sterile water (week 7–8). 
Anxiety-like behavior and cognitive function were tested (at 
week 9) using the elevated plus maze (EPM) and Morris 
water maze (MWM), respectively. Animals continued to 
receive either ammonium acetate or sterile saline during 
probiotic administration and behavioral tests (week 7–9) to 
prevent spontaneous recovery from HA. During the behav-
ioral tests, animals continued to drink either sterile water 

 

 

Figure 1  Experimental protocol design. Time-line of rat experimental procedure. HA, hyperammonemia; NS8, L. helveticus strain NS8; AA, ammonium 
acetate; i.p., intraperitoneal. 
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containing L. helveticus NS8 or sterile water.  
Blood samples (20 μL) were collected (via a small tail 

incision) for the measurement of ammonia concentrations at 
the end of HA or saline treatment (week 6). The daily 
amount of water consumed was measured at the end of the 
two-week probiotic or water treatment (week 8). Rats were 
sacrificed by decapitation after the final MWM test. The 
trunk blood was collected and the brain was removed im-
mediately for further dissection.  

1.5  The EPM test  

The EPM test is widely used to measure anxiety-like be-
havior in response to a novel environment and height. The 
time spent in and number of entries into the open arms were 
taken as indices of anxiety. These parameters were ex-
pressed as a percentage of the total time spent and the total 
entries into any arm during the 5 min test session [34].  

The EPM consisted of a center area (10 cm×10 cm) with 
two opposite closed arms (a 10 cm wide, 50 cm long, and 
30 cm high wall at their sides and far end) and two opposite 
open arms (10 cm wide, 50 cm long) arranged as a plus [34]. 
The device was made of opaque black polypropylene and 
elevated 50 cm above the floor.  

Rats were placed individually in the center of the maze 
facing an open arm, and were allowed 5 min of free explo-
ration. Movements of the animals during the 5-min test pe-
riod were tracked by a video camera positioned above the 
center of the maze and were analyzed using the ANY-Maze 
(Stoelting, USA) video tracking system.  

1.6  The MWM task 

The Morris Water Maze consisted of a dark circular pool 
(140 cm in diameter and 55 cm high) filled (25 cm deep) 
with water (20±1°C) [35]. The pool was divided into four 
zones (arbitrarily designated into north-east, south-east, 
south-west, and north-west orthogonal quadrants) by the 
ANY-Maze software (Stoelting, USA). Extra maze cues 
surrounded the walls of the room where the water maze was 
situated. 

The MWM task lasted for 6 d. During the first four days, 
rats were trained over four trials per day. The platform (11 
cm in diameter) was submerged 1.5 cm from the water sur-
face (and rendered invisible) in the center of the south-west 
quadrant. In each trial, rats were placed in front of the wall 
but at a different starting position (north, east, south and 
west). Rats were free to swim and find the hidden platform 
within 120 s. The escape latency to find the hidden platform 
is taken as an index of learning ability [35]. On day 5, a 
spatial probe test was used to assess retention of spatial 
memory by the swim time in the target zone. For this test, 
the hidden platform was removed and rats were free to 
swim for 120 s from the north-east orthogonal quadrant of 
the pool, a starting position furthest away from the hidden 

platform. On day 6, a visible platform (not submerged in 
water) covered by a piece of aluminum foil was placed in 
another position (the south-east quadrant) to test swimming 
ability and motivation of the rats.  

1.7  Measurement of blood ammonia  

Blood ammonia levels were measured using a Blood Am-
monia Checker AA-4120 (ARKRAY, Inc., Japan). The 
measuring range was 10–400 μg dL1. 

1.8  Measurement of neuroinflammatory markers  

Measurements were carried out in the cerebellum, hippo-
campus and prefrontal cortex, which are brain regions 
known to be crucially involved in cognitive function and 
emotional state [36,37]. These brain regions were removed 
according to Desbonnet et al. [25]. Briefly, brain regions 
were quickly isolated on ice, weighed, then snapped frozen 
by liquid nitrogen and stored at –80°C until analysis. Brain 
tissues were homogenized in phosphate buffered saline (0.1 
mol L1) containing a protease inhibitor cocktail (AMRES- 
COLLC, USA). The homogenate was centrifuged (3000×g, 
10 min, at 4°C). Prostaglandin E2 (PGE2), inducible nitric 
oxide synthase (iNOS) and interleukin-1 beta (IL-1β) were 
measured from the supernatant by enzyme-linked immuno-
sorbent assay (ELISA) kits (RapidBio Lab, USA), accord-
ing to the manufacturer’s protocol.  

1.9  Measurement of the metabolic activity of brain 
5-HT 

5-HT and its metabolite 5-hyroxyindole acetic acid 
(5-HIAA) were measured in the supernatant of the prefron-
tal cortex, hippocampus and cerebellum using ELISA kits 
(RapidBio Lab), according to the manufacturer’s protocol.  

1.10  Analysis of the kynurenine pathway in plasma 

Trunk blood was collected in pre-chilled ethylenedia-
minetetraacetic acid-coated blood collection tubes, and 
plasma was separated by centrifugation (1500×g, 10 min, at 
4°C) and immediately stored at –80°C until analysis. Plas-
ma levels of tryptophan (TRP), and its metabolites, 
L-kynurenine (KYN) and kynurenic acid (KA), were meas-
ured by ELISA kits (RapidBio Lab), according to the man-
ufacturer’s instructions. 

1.11  Statistical analysis 

All data are presented as the mean±SEM. The two-way 
analysis of variance (ANOVA) was used to identify training 
days 1–4 of MWM task, treatment effects, and interactions 
between these factors, and the other data were analyzed by 
one-way ANOVA. The homogeneity of variance was ana-
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lyzed with the Levene test. For post hoc analysis of group 
differences, the Tukey HSD test was employed. Probability 
values of P<0.05 were regarded as significant difference. 
Statistical evaluation of the results was performed by SPSS 
17.0 (SPSS Inc., USA). 

2  Results 

2.1  Daily amount of consumed water remained un-
changed between all three groups 

The daily amount of ingested water measured two weeks 
after probiotic administration was similar between the three 
groups; control group: 41.3±1.7 mL, HA group: 42.3±3.4 mL, 
and HA+NS8 group: 48.3±4.1 mL. 

2.2  HA treatment elevated blood ammonium levels  

Ammonium acetate treatment for four weeks significantly 
(P<0.01) increased ammonium levels to 130.8±8.9 μg dL1 
and 147.8±12.5 μg dL1 in the HA group and HA+NS8, 
respectively, compared with the control (28.2±3.4 μg dL1). 

2.3  Probiotic treatment increased the percentage of the 
number of entries into the open arms of the EPM test in 
HA rats 

Both the percentages of time spent (5.3%±2.1% vs. 
30.2%±4.5%, P<0.05) in and the number of entries 
(12.3%±4.5% vs. 43.4%±5.4%, P<0.05) into the open arms  

were significantly reduced in HA rats, compared with the 
control (Figure 2A and B). Probiotic treatment of HA rats 
significantly (P<0.05) increased the percentage of number 
of entries into the open arms (39.7%±2.1%) (Figure 2B), 
but had no effect on the time spent in the open arms, com-
pared with HA rats.  

2.4  Probiotic treatment improved learning and 
memory abilities of the MWM task in HA rats 

The escape latency to find the hidden platform was signifi-
cant different (P<0.01) among the three groups over train-
ing days 1–4 (Figure 3). Although the three groups were not 
significantly different on day 1, the escape latency to find 
the hidden platform was significantly increased in HA rats 
compared with the control on day 2, day 3 and day 4 (day 2: 
110.1±5.9 s vs. 53.2±5.7 s, P<0.01; day 3: 96.5±10.2 s vs. 
14.2±2.3 s, P<0.01; day 4: 109.1±7.8 s vs. 10.3±1.3 s, 
P<0.01). However, the escape latency was significantly 
(P<0.01; P<0.01; P<0.01) reduced in HA rats with probiotic 
treatment during the training days (day 2: 45.9±4.4 s, day 3: 
11.3±1.5 s, day 4: 5.7±0.4 s) compared to HA rats, suggest-
ing that probiotic treatment enhances learning ability (Fig-
ure 3). The interaction between the factors training days and 
treatment effects was significant (P<0.01).  

The percentage of swim time in the target zone is taken 
as an index of memory retention. The percentage of swim 
time in the target zone was significantly (P<0.01) reduced 
in HA rats (22.7%±0.7%) compared with control rats 
(32.4%±0.8%) (Table 1). However, probiotic treatment sig-

 

 
Figure 2  Probiotic treatment in HA rats prevents HA-induced anxiety-like behavior in the elevated plus maze (EPM) test. The time spent in and number of 
entries into the open arms were taken as indices of anxiety. A, Percentage of time spent in the open arms of the EPM. B, Percentage of the number of entries 
into the open arms of the EPM. Values are represented as the mean±SEM (n=6 rats per group). *, P<0.05.  

Table 1  Memory retention and swimming ability in the Morris water maze taska) 

 
Percentage of swimming time spent in the 

target zone (s) 
Escape latency to the visible platform (s) Swimming speed (cm s1) 

Control 32.4±0.8 5.2±0.2 10.0±0.4 
HA 22.7±0.7** 5.2±0.6 10.1±0.8 

HA+NS8 35.5±1.2## 4.9±0.3 10.4±0.8 
ANOVA P<0.01 P>0.05 P>0.05 

a) Memory retention is measured by the percentage of swim time in the target zone on training day 5. Swimming ability is evaluated by the escape laten-
cy to find the visible platform and the swim speed on day 6. Values are represented as the mean±SEM (n=6 rats per group). HA, hyperammonemia; NS8, L. 
helveticus strain NS8; ANOVA, analysis of variance. **, P<0.01 vs. control; ##, P<0.01 vs. HA. 
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Figure 3  Probiotic treatment in HA rats restores HA-mediated impair-
ment of the learning ability in Morris water maze (MWM) task. The escape 
latency to find the hidden platform over training days 1–4 was taken as an 
index of learning ability. Values are represented as the mean±SEM (n=6 
rats per group). **, P<0.01.  

nificantly (P<0.01) increased the percentage of swim time 
to 35.5%±1.2%, which is significantly greater than in HA 
rats (Table 1). The escape latency to find the visible plat- 
form and swim speed were not significantly different be- 

tween the three groups (Table 1); thus, swimming ability 
was unaffected.  

2.5  Probiotic treatment reduced the levels of PGE2 
and IL-1β in selected brain regions of HA rats  

HA treatment significantly increased the level of iNOS in 
the cerebellum (25.5±1.5 U g1 vs. 19.5±1.0 U g1, P<0.01), 
but not in the hippocampus or prefrontal cortex, compared 
with control rats (Figure 4A). Probiotic treatment of HA rats 
had no significant effect on iNOS in any of these brain re-
gions, compared with HA rats.  

HA treatment significantly increased the concentration of 
PGE2 in the cerebellum (2204.0±36.5 pg g1 vs. 1787.0± 
59.5 pg g1, P<0.01) and hippocampus (2282.0±83.0 pg g1 
vs. 1901.0±95.0 pg g1, P<0.05), but not in the prefrontal 
cortex, compared with the control (Figure 4B). Probiotic 
treatment of HA rats significantly reduced the concentra-
tions of PGE2 in the cerebellum (P<0.01) and hippocampus 
(P<0.01) to 1560.5±162.5 pg g1 and 1688.0±44.5 pg g1, 
respectively, compared with HA rats (Figure 4B).  

HA treatment significantly increased the concentration  
of IL-1β in the cerebellum (175±8.0 pg g1 vs. 119.0±4.5 pg 
g1, P<0.01), hippocampus (183.5±10.0 pg g1 vs. 134.0±  

 

Figure 4  Probiotic treatment in HA rats attenuates HA-mediated neuroinflammation. Neuroinflammation was assessed by measuring the inflammatory 
markers: inducible nitric oxide synthase (iNOS) (A), prostaglandin E2 (PGE2) (B), and interleukin-1 beta (IL-1β) (C) in the cerebellum, hippocampus and 
prefrontal cortex. Values are represented as the mean±SEM (n=6 rats per group). *, P<0.05; **, P<0.01.  
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9.0 pg g1, P<0.01) and prefrontal cortex (187.5±1.5 pg g1 
vs. 107.0±8.5 pg g1, P<0.01), compared to control rats 
(Figure 4C). Probiotic treatment of HA rats significantly 
reduced this level to 109.5±7.5, 123.0±10.0, and 126.0±10.0 
pg g1 in the cerebellum (P<0.01), hippocampus (P<0.01), 
and prefrontal cortex (P<0.01), respectively, compared to 
HA rats (Figure 4C).  

2.6  Probiotic treatment reduced levels of 5-HT but not 
its metabolite, 5-HIAA, in HA rats 

HA did not affect the level of 5-HT in any of the three test-
ed brain regions (Figure 5A). However, HA significantly 
increased the concentrations of 5-HIAA in the cerebellum 
(77.5±4.0 pg g1 vs. 50.0±4.0 pg g1, P<0.01), hippocampus 
(78.5±5.0 pg g1 vs. 56.0±5.5 pg g1, P<0.05) and prefrontal 
cortex (75.0±4.0 pg g1 vs. 56.0±4.5 pg g1, P<0.05), com-
pared with the control (Figure 5B). Probiotic treatment of 
HA rats did not affect 5-HIAA levels in any of the tested 
brain regions (Figure 5B), but significantly (P<0.01) re-
duced the concentration of 5-HT in the cerebellum and hip-
pocampus, compared with HA rats (Figure 5A).  

2.7  Probiotic treatment of HA rats affected the plasma 
kynurenine pathway  

HA treatment significantly increased plasma levels of TRP 
(30280±1089 pmol mL1 vs. 23590±1260 pmol mL1, 
P<0.01), compared with the control (Figure 6A). Further-
more, HA treatment significantly decreased KYN/TRP 
(0.0121±0.0006l vs. 0.0253±0.001, P<0.01), and increased 
KA/KYN ratio (1.4±0.09 vs. 0.8±0.1, P<0.01), compared 
with the control (Figure 6B). Probiotic treatment of HA rats 
markedly increased (P<0.01) and decreased (P<0.05) the 
ratio of KYN/TRP (0.022±0.001) and KA/KYN (0.9±0.06), 
respectively, compared with HA rats (Figure 6B).  

3  Discussion  

In the present study, chronic HA induces cognitive decline 
and anxiety-like behavior in rats, supporting the idea that 
HA-mediate HE leads to neurological dysfunctions. Fur-
thermore, probiotic treatment of HA rats with the L. helvet- 
icus NS8 improves cognitive decline and anxiety-like be-
havior, suggesting that this probiotic strain may be benefi- 

 

 

Figure 5  Probiotic treatment in HA rats restores the HA-mediated enhancement of 5-HT metabolic activity. The levels of 5-HT (A) and its metabolite, 
5-HIAA (B), in the cerebellum, hippocampus and prefrontal cortex. Values are represented as the mean±SEM (n=6 rats per group). *, P<0.05; **, P<0.01. 

 

Figure 6  Probiotic treatment in HA rats restores HA-induced alterations in the kynurenine pathway. Plasma concentrations of tryptophan (TRP), 
L-kynurenine (KYN) and kynurenic acid (KA) (A), and the KYN/TRP and KA/KYN ratio (B). Values are represented as the mean±SEM (n=6 rats per 
group). *, P<0.05; **, P<0.01. 
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cial for the treatment of neurological dysfunctions in HA 
rats.  

3.1  Effect of L. helveticus NS8 on cognitive function 
and neuroinflammation 

The mechanism by which HA impairs cognitive function is 
beginning to be clarified in animal studies. Portacaval 
shunts (PCS) rats have been found to develop learning im-
pairment of the Y-maze task. These rats exhibit HA and 
neuroinflammation [36]. Treatment of PCS rats with the 
anti-inflammatory, ibuprofen, reduces neuroinflammation 
but not HA, and also restores learning ability [38]. Fur-
thermore, data from a rat model of chronic HA have sug-
gested that neuroinflammation mediates the deleterious ef-
fects of HA on cognitive function [1]. These results suggest 
that HA may induce neuroinflammation-mediated cognitive 
impairment. In support of this pathogenic role, our study 
shows that HA induces neuroinflammation in the cerebel-
lum, hippocampus and prefrontal cortex, and impairs learn-
ing ability and spatial memory in rats. Therefore, probiotic 
treatment may be beneficial for HA-mediated cognitive 
decline in rats given because cognitive decline is improved 
and neuroinflammation is attenuated with this treatment.   

A main mechanism of HA-induced neuroinflammation is 
the release of pro-inflammatory molecules from activated 
microglia [1]. Moreover, the transcription factor, nuclear 
factor kappa B (NF-κB), plays a critical role in microglial 
activation [39]. Therefore, in the present study, probiotic 
treatment may have attenuated neuroinflammation by sup-
pressing the activation of NF-κB. In support of this hypoth-
esis, related studies have reported that suppression of in-
flammation can occur in response to probiotic Lactobacil-
lus-mediated inhibition of NF-κB activation [40,41].  

3.2  Effect of L. helveticus NS8 on anxiety-like behavior 
and 5-HT metabolism 

A dysfunctional of 5-HT system has long been implicated in 
the pathogenesis of anxiety disorders [42]. Thus, the anxie-
ty-like behavior observed in HA rats of the present study 
may have resulted from changes in the central 5-HT system. 
In support of this theory, our results showed that HA rats 
had enhanced 5-HT metabolism in the cerebellum, hippo-
campus and prefrontal cortex, as reflected by increased lev-
els of 5-HIAA but unchanged levels of 5-HT. A previous 
study found similar results in PCS-induced HA rats that 
displayed elevated 5-HIAA but unaltered 5-HT levels, and 
when challenged with ammonium acetate, 5-HT release was 
transiently elevated [9,12].  

Indeed, results from related studies have suggested an 
association between the hyperactivity of the 5-HT system 
and an increased susceptibility to develop an anxiety disor-
der. Iversen [43] proposed that an increase in brain 5-HT 
concentration elevates anxiety while a decrease in brain 

5-HT level reduces anxiety. Moreover, reduced whole-  
tissue level of 5-HT in regional brain was linked to a 
low-anxiety phenotype in transgenic mice overexpressing 
5-HT transporter [44]. Therefore, the results observed in the 
present study, that L. helveticus NS8 reduces the levels of 
5-HT in the cerebellum and hippocampus, and improves 
anxiety-like behavior in HA rats, may suggest that this pro-
biotic may be beneficial in the treatment of anxiety disorder 
in HA rats. 

3.3  Effect of L. helveticus NS8 on kynurenine pathway  

5-HT synthesis in the brain is crucially dependent on its 
precursor TRP. Therefore, enhanced 5-HT metabolism in 
HA rats of the present study may be attributed to a signifi-
cant rise in TRP. Peripheral TRP concentration is increased 
and correlates well with central TRP, 5-HT and 5-HIAA 
levels in HE patients [10,45]. L. helveticus NS8-mediated 
reduction of 5-HT metabolism in HA rats in the current 
study was possibly due to enhanced TRP degradation be-
cause the KYN/TRP ratio was increased, despite the levels 
of TRP themselves remaining unchanged.  

The kynurenine pathway is the major route for TRP me-
tabolism, in which indoleamine 2,3-dioxygenase (IDO) 
converts TRP to KYN [46]. In the current study, the rise in 
the KYN/TRP ratio in HA rats treated with probiotics may 
indicate that probiotics enhance IDO activity. IDO is ex-
pressed in various cell types, and is widely involved in im-
munomodulatory activity [47], such as anti-inflammatory 
effect and protective role in a mouse model of colitis [48]. 
Therefore, in the present study, improved anxiety-like be-
havior in probiotic treatment of HA rats may be a result of 
an immunomodulatory effect of this treatment through en-
hanced IDO activity, the promotion of TRP depletion, and 
reduction of 5-HT metabolism. Similarly in another study, 
attenuation of the allergic airway response was found to be 
due to an increase in systemic IDO activity induced by ad-
ministration of live Lactobacillus reuteri [49]. However, 
our results are contradicted by other studies that have shown 
suppression of IDO production in response to treatment of 
the probiotic Bifidobacterium species or Lactobacillus 
johnsonii in a rat model of depression [25,50]. In the mouse 
model of allergic airway inflammation, it is important to 
note that the IDO activity was enhanced only following the 
administration of Lactobacillus reuteri but not Lactobacil-
lus salivarius [49]. These data suggest that different probi-
otic species or strains may have different effects on IDO 
activity. Furthermore, KA produced from KYN has been 
shown to enhance anxiety because it can decrease the ex-
tracellular level of glutamate [51,52]. Results from our 
study show an increase in the KA/KYN ratio in HA rats but 
a decrease of that following probiotic treatment, thus 
providing further evidence for the potential anxiolytic prop-
erties of the probiotic L. helveticus strain NS8.  

In conclusion, the data from our study suggest that ad-
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ministration of probiotic L. helveticus strain NS8 is a poten-
tial therapeutic approach for HA-mediated cognitive decline 
and anxiety-like behavior. The effect of probiotic treatment 
on improving behaviors may be attributed to its immuno-
modulatory properties of attenuating neuroinflammation 
and reducing 5-HT metabolism. We therefore provide 
strong evidence supporting the possible use of probiotic 
treatment for neurological disorders in addition to its use in 
the gastrointestinal tract. A better understanding of the be-
havioral effect of probiotics would require further investiga-
tions of their immunomodulatory activity.  
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